PUBLICATIONS
All publications
1. E. Marinoiu, D. Papava, C. Sminchisescu. Pictorial Human Spaces: A Computational Study on the Human Perception of 3D Articulated Poses, International Journal of Computer Vision, 2016.
.pdf
2. S. Mathe, A. Pirinen, C. Sminchisescu. Reinforcement Learning for Visual Object Detection, IEEE International Conference on Computer Vision and Pattern Recognition, 2016
3. C. Ionescu, O. Vantzos, C. Sminchisescu. Matrix Backpropagation for Deep Networks with Structured Layers, IEEE International Conference on Computer Vision, 2015
4. J. Carreira, R. Caseiro, J. Batista and C. Sminchisescu. Free-Form Region Description with Second-Order Pooling. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2015.
5. A. Zanfir, C. Sminchisescu. Large Displacement 3D Scene Flow with Occlusion Reasoning, IEEE International Conference on Computer Vision, 2015.
6. S. Mathe, C. Sminchisescu. Actions in the Eye: Dynamic Gaze Datasets and Learnt Saliency Models for Visual Recognition. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2015.
7. D. Banica, C. Sminchisescu. Second-Order Constrained Parametric Proposals and Sequential Search-Based Structured Prediction for Semantic Segmentation in RGB-D Images, IEEE International Conference on Computer Vision and Pattern Recognition, 2015.
8. C. Ionescu, D. Papava, V. Olaru, C. Sminchisescu: Human3.6M: Large Scale Datasets and Predictive Methods for 3D Human Sensing in Natural Environments, IEEE Transactions on Pattern Analysis and Machine Intelligence (PAMI), 2014.
9. M. Leordeanu, R. Sukthankar, and C. Sminchisescu: Generalized Boundaries from Multiple Image Interpretations, IEEE Transactions on Pattern Analysis and Machine Intelligence (PAMI), 2014.
10. S. Mathe and C. Sminchisescu. Dynamic Eye Movement Datasets and Learnt Saliency Models for Visual Action Recognition, European Conference on Computer Vision, Springer, 2012.
11. E. Bazavan, F. Li, and C. Sminchisescu. Fourier Kernel Learning, European Conference on Computer Vision, Springer, 2012.
12. M. Leordeanu, R. Sukthankar, and C. Sminchisescu. Efficient Closed-Form Solution to Generalized Boundary Detection. European Conference on Computer Vision, Springer, 2012.
13. A. Levinshtein, C. Sminchisescu, and S. Dickinson. Optimal Contour Closure. International Journal of Computer Vision, 2012.
14. J. Carreira, R. Caseiro, J. Batista, and C. Sminchisescu. Semantic Segmentation with Second-Order Pooling, European Conference on Computer Vision, Springer, 2012.
15. M. Leordeanu, C. Sminchisescu: Efficient Hypergraph Clustering, Artificial Intelligence and Statistics, 2012.
16. F. Li, G. Lebanon, and C. Sminchisescu. Chebyshev Approximations to the Histogram χ2 Kernel. In IEEE International Conference on Computer Vision and Pattern Recognition, 2012.
17. J. Carreira, F. Li, C. Sminchisescu: Object Recognition by Sequential Figure-Ground Ranking, International Journal of Computer Vision, 2011.
18. C. Sminchisescu, M. Welling: Generalized Darting Monte-Carlo, Pattern Recognition, 2011.
19. J. Carreira, C. Sminchisescu: Constrained Parametric Min-Cuts for Automatic Object Segmentation, IEEE Transactions on Pattern Analysis and Machine Intelligence, 2011.
20. M, Leordeanu, A. Zanfir, C. Sminchisescu: Semi-supervised Learning and Optimization for Hypergraph Matching, International Conference on Computer Vision, 2011.
21. C. Ionescu, F. Li, C. Sminchisescu: Latent Structured Models for Human Pose Estimation, International Conference on Computer Vision, 2011.
22. L. Bo, C. Sminchisescu: Twin Gaussian Processes for Structured Prediction, International Journal of Computer Vision, 2010.
23. C. Sminchisescu, A. Kanaujia, D. Metaxas: BM3E: Discriminative Density propagation for Visual Tracking, IEEE Transactions on Pattern Analysis and Machine Intelligence, 2007.
24. C. Sminchisescu, B. Triggs: Fast-Mixing Hyperdynamic Sampling, Journal of Image and Vision Computing, 2006.
25. C. Sminchisescu, A. Kanaujia, D. Metaxas: Conditional Models for Contextual Human Motion Recognition, Computer Vision and Image Understanding, 2006.
26. C. Sminchisescu, B. Triggs: Building Roadmaps of minima and Transitions in Visual Models, International Journal of Computer Vision, 2005.
27. C. Sminchisescu, D. Metaxas, S. Dickinson: Incremental Model-Based Estimation using Geometric Constraints, IEEE Transactions on Pattern Analysis and Machine Intelligence, 2005.
28. C. Sminchisescu, B. Triggs: Estimating Articulated Human Motion with Covariance Scaled Sampling, International Journal of Robotics Research, 2003.
29. S. Mathe and C. Sminchisescu. Dynamic Eye Movement Datasets and Learnt Saliency Models for Visual Action Recognition, European Conference on Computer Vision, Springer, 2012
30. S. Mathe and C. Sminchisescu. Actions in the Eye: Dynamic Gaze Datasets and Learnt Saliency Models for Visual Recognition, Technical Report, February, 2012
31. Action from Still Image Dataset and Inverse Optimal Control to Learn Task Specific Visual Scanpaths
32. D. Banica and C. Sminchisescu. Second-Order Constrained Parametric Proposals and Sequential Search-Based Structured Prediction for Semantic Segmentation in RGB-D Images. CVPR 2015
33. D. Banica, A. Agape, A. Ion and C. Sminchisescu. Video Object Segmentation by Salient Segment Chain Composition. In Proceedings of the IEEE International Conference on Computer Vision (ICCV), Springer 2013
34. E. Marinoiu, D. Papava, and C. Sminchisescu. Pictorial Human Spaces: How Well do Humans Perceive a 3D Articulated Pose? In Proceedings of the IEEE International Conference on Computer Vision (ICCV), Springer 2013
35. M. Zanfir, E. Marinoiu, C. Sminchisescu. Spatio-Temporal Attention Models for Grounded Video Captioning, Asian Conference on Computer Vision, 2016.
36. A. Popa, C. Sminchisescu. Parametric Image Segmentation of Humans with Structural Shape Priors, Asian Conference on Computer Vision, 2016.
37. M. Leordeanu, A. Zanfir, and C. Sminchisescu. Locally Affine Sparse-to-Dense Matching for Motion and Occlusion Estimation. In International Conference on Computer Vision, December 2013.
38. M, Leordeanu, A. Zanfir, C. Sminchisescu: Semi-supervised Learning and Optimization for Hypergraph Matching, International Conference on Computer Vision, 2011.
39. M. Zanfir, M. Leordeanu, and C. Sminchisescu. The Moving Pose: An Efficient 3D Kinematics Descriptor for Low-Latency Action Recognition and Detection. In International Conference on Computer Vision, December 2013.
40. S.C. Cheran, P. Cerello et al “3-D Object Segmentation using Ant Colonies” – Pattern Recognition Volume 43, Issue 4, April 2010, Pages 1476-1490
41. E. Bazavan, F. Li, and C. Sminchisescu. Fourier Kernel Learning. In European Conference on Computer Vision, October 2012
42. S.C. Cheran “Artificial life models in 3D Worlds: Virtual Ant Colonies for the Reconstruction of the Bronchial and Vascular Trees and the Pleura in Lung CTs” – February 15th 2007, PhD Thesis
43. S.C. Cheran, G. Gargano “Artificial Life Models in Lung CTs”, Lecture Notes in Computer Science Volume 3907 / 2006 pp. 510 – 514
44. S.C. Cheran, G. Gargano et al, “Artificial Life Models in Lung CTs” , GESTS Int’l Trans. Computer Science and Engineering., Vol.27, No.1 pg 159-167 (best article of the month award), jan 2006
45. S.C. Cheran, G. Gargano., ”Computer Aided Diagnosis for Lung CT Using Artificial Life Models”,SYNASC 2005. IEEE Computer Society Press, pg 329-332, 2005
46. P. Cerello, S. C. Cheran et al “GPCALMA: a GRID based tool for mammographic screening , Methods of Information in Medicine°, n. 2, pp.244-248, 2005
47. Masalla G et al “Classifiers trained on dissimilarity representation of medical pattern: a comparative study” , Il Nuovo Cimento C, Volume 028, Issue 06 , pp 905-912
48. F. Fauci et al “A massive lesion detection algorithm in mammography”, Physica Medica, Vol. XXI, N.1, January-March, pp. 21-28, 2005.
49. S. Bagnasco et al “Mammogram segmentation by contour searching and massive lesions classification with Neural Network” , IEEE-Transactions on Nuclear Science (TNS) Vol. 53, No. 4 (August 2006)
50. P. Cerello et al “Distributed Medical Images Analysis on a Grid Infrastructure In print su Future Generation in Grid System”, Special Issue on Life Science Grids for Biomedicine and Bioinformatics, 2006
51. Bellotti R. et al “A completely automated CAD system for mass detection in a large mammographic database”, Medical Physics, Aug 2006
 
 
made by basislab.ro